Home   |   Contact   |   Sitemap   |   中文   |   CAS
Home|About Us|People|Press|Facilities|Int’l Cooperation|Papers|Research|Education & Training
Press
News
Upcoming Events
Reports from Overseas
Image Bank
IHEP Video

  Location: Home > Press > Upcoming Events
        【3.23】Academic Lecture: Holographic Entanglement Entropy for WAdS3 TEXT SIZE: A A A

Seminar

Title: Holographic Entanglement Entropy for WAdS3

Speaker: Prof. Wei Song (Yau Mathematical Sciences Center, Tsinghua University)

Time: 3:30PM, Mar. 23rd (Wednesday)

Place: Theoretical Physics Division,319

Abstract:

Entanglement plays a central role in many fields of physics, including many body systems, quantum information, and quantum field theories. In the context of AdS/CFT, Ryu and Takayanagi proposed that the holographic dual of the entanglement entropy is captured by the area of a minimal co-dimension two surface in the bulk. Large amount of evidence have accumulated and an explanation as the generalized gravitational entropy was made by Lewkowycz and Maldacena.

On the other hand, the success of holography goes beyond AdS/CFT, for instance, the recent development of the Kerr/CFT correspondence, flat space holography, Shrodinger or Lifshitz spacetime/non-relativistic field theory duality, etc. One of the simplest examples is the so-called Warped AdS3 (WAdS3) spacetime, whose holographic dual has been conjectured in the literature.

In this talk, the speaker will report some progress on deriving the holographic entanglement entropy for spacetimes which are not asymptotic to AdS. We propose an adaption to the Lewkowycz-Maldaceda procedure. Explicit calculation is carried out for WAdS3 in a simple theory. It turns out that the entanglement entropy in WAdS3 is captured by the least action of a charged particle in WAdS3 space, or equivalently, by the geodesic length in an auxiliary AdS3. Consequently, the bulk calculation agrees with the CFT results, providing another piece of evidence for the WAdS3/CFT2 correspondence.

 

 
Copyright ©2002-2014 Institute of High Energy Physics, CAS
Questions and Comments to webmaster@ihep.ac.cn
mailing address:19B YuquanLu, Shijingshan District
Beijing, 100049 FAX: 86-10-88233374 TEL: 86-10-88233093